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We report that the reaction between the pyridoxal 5′-phosphate
(PLP) analogue1 (10 mM) and glycine (100 mM) in D2O buffered
at neutral pD does not give the expected products of a PLP-
catalyzed reaction, but rather gives aquantitatiVe yield of the
diasterioisomers2a and2b from the formal Claisen-type addition
of glycine to1 (Scheme 1).

The highly effective catalysis by acetone of deuterium exchange
of theR-amino protons of glycine methyl ester in D2O results from
the seven-unit decrease in the pKa of these protons upon formation
of the iminium ion adduct with acetone.1 This is analogous to the
effect of formation of a Schiff’s base with PLP on the carbon acidity
of R-amino acids, which is thought to be well understood.2a We
expected that an examination of the deuterium exchange reaction
of glycine catalyzed by the PLP analogue1 would provide the
carbon acid pKa of theR-amino protons of the iminium ion adduct
of glycine with 1.2b However,1H NMR analysis3a of the reaction
of glycine (100 mM) with1 (10 mM) in D2O buffered at pD 7.0
with 100 mM phosphate at 25°C (I ) 1.0, KCl) revealed the first-
orderdisappearanceof 1 to give an equilibrium mixture containing
3% 14 and 97% of the diastereomeric products2a and2b in a ratio
of 2:1,5 but no detectable (<1%) incorporation of deuterium from
D2O into glycine or transamination to giVe 5′-deoxypyridoxamine.6

The sum of the normalized integrated peak areas for the protons
of 1, 2a, and2b was constant during reaction of more than 90% of
1, and both the disappearance of1 and the appearance of2a and
2b are governed by the same first-order rate constant,kobsd ) 4.3
× 10-5 s-1. 13C NMR analysis of the reaction of [2-13C]-labeled
glycine under the same conditions revealed a pair of signals for2a
and 2b. A value of kobsd ) 4 × 10-5 s-1 was determined by
monitoring the disappearance of the signal for the iminium ion
adduct of [2-13C]-labeled glycine with1.3b

The reaction of glycine with pyridoxal to give2 was reported
50 years ago in a study that focused on the role of metal cations.7

However, for many years the literature has emphasized thesimilarity
between nonenzymatic and enzymatic reactions promoted by
pyridoxal,2a,8 so that our failure to observe the expected products
of the reaction of glycine with the PLP analogue1 represents a
new “wrinkle” in the chemistry of this important cofactor.

The reaction of aminomalonate with1 has been reported to give
CO2 and 2.9 If this proceeds by decarboxylation of the iminium

ion adduct of aminomalonate with1 to give the enolate3 followed
by addition of 3 to a second molecule of1 (Scheme 2), then
deprotonation of the iminium ion adduct of glycine with1 to give
3 should also result in the formation of2 (Scheme 2),although
not necessarily as the only product. 1H NMR analysis3a of the
reaction of aminomalonate (100 mM) with1 (10 mM) in D2O
buffered at pD 5.7 with 40 mM acetate at 25°C (I ) 1.0, KCl)
showed complete reaction within 10 min and the essentially
quantitative formation of2a and2b.5

This formal Claisen-type addition of glycine to1 could proceed
by cyclization of the enolate3 to give the aziridinium ion4,
followed by regiospecific nucleophilic attack of water at the
R-pyridyl carbon. However, the following results from kinetic
analyses of the reaction of glycine (100 mM) at both low (0.10
mM) and high (10 mM) initial concentrations of1 in H2O (pH
6.5) or D2O (pD 7.0) buffered by 100 mM phosphate ([B]/[BL+]
) 1.0) at 25°C (I ) 1.0, KCl) provide strong support for the
reaction mechanism shown in Scheme 2.

(1) The reactions of1 with glycine at [1]o ) 10 mM in D2O
monitored by1H NMR3aor spectrophotometrically at 412 nm10a(kobsd

) 4.3× 10-5 s-1) and in H2O monitored at 412 nm10a (kobsd) 5.0
× 10-5 s-1) are all first-order in [1] for four reaction half times.
This is consistent with rate-determining deprotonation of the
iminium ion adduct to give3 (k-p), because the concentration of1
at all times in these experiments is sufficient for the effective
trapping of3 by 1 (kadd[1] . kp, Scheme 2).
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(2) Figure 1 shows the time courses for the reactions of1 with
glycine at [1]o ) 0.1 mM in H2O and D2O monitored at 412 nm.3c,10b

Now, neither reaction is first-order in [1], and no stable endpoint
is observed after ca. 40 half times calculated for these reactions at
[1]o ) 10 mM. This is consistent with a change to a reaction that
is second-order in [1] when [1]o is decreased from 10 mM to 0.1
mM. At [1] ) 0.1 mM, deprotonation of the iminium ion is partly
reversible so that the addition of3 to 1 is partly rate-limiting (kadd[1]
≈ kp, Scheme 2).11 The initial velocity, corrected for the estimated
difference in the endpoints, is ca. 1.8-foldlarger for reaction in
D2O than in H2O. This contrasts the 14%smallervalue ofkobsdfor
the reaction of1 in D2O than that in H2O at [1]o ) 10 mM. The
increase in the velocity for the reaction of1 in D2O relative to that
in H2O as the rate-limiting step changes fromk-p at high [1] to
kadd at low [1] is a consequence of the normal primary deuterium
isotope effect on theprotonation of 3 (kp, Scheme 2). This is
because the slower protonation of3 in D2O than in H2O results in
more favorable partitioning of3 to product in D2O, and this
partitioning controls the overall reaction velocity whenkaddis partly
rate-determining.12

The formal Claisen-type addition of glycine to1 has escaped
characterization and itappearsvery unlikely to occur in water, a
moderately acidic solvent that rapidly protonates the highly basic
enolates of simple carboxylic acid derivatives, including amino
acids.13 The protonation of3 would result in the “normal” product
of a PLP-catalyzed reaction, so that the extensive formation of2a
and2b from addition of3 to 1 that is present atg0.1 mM in water
is a consequence of an unprecedented largeselectiVity of 3 toward
addition to 1 in a protic solvent buffered at neutral pH. By
comparison, the protonation of an acetone-like enolate by buffer
acids is significantly faster than its intramolecular addition to a
benzaldehyde-type carbonyl group.14 Apparently, the extensive
resonance stabilization of3 favors carbonyl addition in water
because it results in a larger increase in the intrinsic barrier to its
protonation than in that for carbonyl addition.15

The 5′-deoxypyridoxal-stabilized enolate of alanine generated
by loss of CO2 from the iminium ion adduct ofR-methylamino-
malonate with1 has been reported to undergo a reaction similar to
that reported here.16 However, the reaction of dilute 3-hydroxy-4-
pyridinecarboxaldehyde (0.5 mM) with a large excess of alanine
in strongly buffered solution reportedly yields only pyruvate from
a transamination reaction,17 which suggests that the glycine enolate

3 is unusually reactive toward carbonyl electrophiles. Finally,
although we are not aware of the biological relevance of the reaction
shown in Scheme 2, we are reluctant to conclude that it has no
biochemical implications.
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Figure 1. Time courses for reaction of glycine (100 mM) with1 (0.1 mM)
in H2O at pH 6.5 (9) and in D2O at pD 7.0 (b) buffered by 100 mM
phosphate at 25°C andI ) 1.0 (KCl), monitored at 412 nm.

C O M M U N I C A T I O N S

J. AM. CHEM. SOC. 9 VOL. 126, NO. 34, 2004 10539


